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Abstract: Biochar yield from biomass pyrolysis is influenced by complex interactions among feedstock 

properties and pyrolysis conditions. This study proposes the generation of an artificial neural network (ANN) 

model to predict biochar yield using input variables including volatile matter, fixed carbon, ash content, 

elemental composition (C, H, O, N), and temperature on pyrolysis process. A multilayer perceptron (MLP) 

network was trained using experimental data collected from various biomass sources. The model achieved high 

performance, with correlation coefficients (R2) of 0.98812 for training, 0.96529 for validation, and 0.94148 

for testing. Mean squared error (MSE) analysis showed optimal validation performance at epoch 31, while the 

error histogram and regression plots confirmed strong predictive accuracy across all datasets. These results 

demonstrate that ANN is a powerful tool for modeling biochar production, offering a reliable and efficient 

alternative to labor-intensive experimental methods. 
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1. Introduction 

Biochar has attracted escalating emphasis in recent years due to its prospect applications in sustainable 

agriculture, environmental remediation, and carbon sequestration [1], [2]. As a carbon-rich solid product obtained from 

the biomass thermochemical processing, biochar plays a critical role in improving soil fertility, carbon-negative energy 

system, improved energy efficiency, reducing greenhouse gas emissions, and managing agricultural waste. These 

environmental and economic benefits have spurred extensive research into optimizing biochar production processes. 

Among the different thermochemical conversion techniques, pyrolysis is evaluated the most efficient and widely 

used method for biochar production [3]. Pyrolysis requires the thermal decomposition of organic materials in the 

absence or limited presence of oxygen, resulting in the formation of three primary products: bio-oil (liquid), biochar 

(solid), and syngas (gas). The yield and quality of biochar are strongly affected by several factors, including the 

properties of the feedstock and the operating conditions, particularly the pyrolysis temperature [4]. 

Numerous theoretical models have been developed to project biochar yield under different pyrolysis conditions 

[5]. These models are often based on reaction kinetics, mass balance, or empirical correlations. However, the 

heterogeneous nature of biomass and the difficulty of thermal decomposition reactions limit the accuracy and 

generalizability of such models. As a result, there is a growing need for alternative predictive approaches that is able to 

handle complex, nonlinear relationships between process outputs and input variables. 
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In this context, machine learning (ML) techniques have developed as powerful tools for process modeling and 

prediction in bioenergy research. One of the most widely used models in this domain is the Artificial Neural Network 

(ANN), particularly the Multilayer Perceptron (MLP) architecture [6]. These networks are capable of capturing intricate 

patterns within large datasets and have demonstrated high predictive accuracy in various applications, including 

pyrolysis product prediction. 

The aim of this study is to generate a prediction model using a Multilayer Perceptron neural network to estimate 

biochar yield derived from biomass properties and temperature process of pyrolysis. The input variables considered 

include proximate analysis data (fixed carbon, ash content, volatile matter), elemental composition (carbon, oxygen, 

hydrogen, nitrogen), and the operating temperature. This approach aims to provide a reliable, data-driven method for 

estimating biochar yield, contributing to the optimization and design of efficient pyrolysis processes. 

2. Materials and Methods 

2.1. Data Collection and Preprocessing 

In order to facilitate the development of reliable and generalizable data-driven models, a comprehensive dataset 

comprising 301 individual records was systematically compiled from 17 peer-reviewed studies, as summarized in Table 

1 [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23]. This dataset represents a diverse 

selection of biomass feedstocks, including agricultural residues, bagasse, bamboo, cocopeat, coconut shell, coconut fibre, 

various pine derivatives (e.g., sawdust, wood), orange processing residues (pomace), cassava stem, rape stalk, and 

rhizome, palm kernel shell, cotton stalk, wood stem and barks. 

The proximate composition—consisting of fixed carbon (FC), ash, and volatile matter (VM) —was uniformly 

expressed on a dry basis for the raw feedstocks. It is important to acknowledge that the limit of the current dataset is 

confined to biomass with composition of ash ranging from 0% to 15%, indicating the necessity for future dataset 

expansion to include feedstocks with higher inorganic content in order to broaden the relevance of the predictive 

models. 

Furthermore, the ultimate (elemental) composition of the feedstocks was reported in terms of carbon (C), oxygen 

(O), hydrogen (H), and nitrogen (N). Due to the presence of data reported in both wet and dry bases across the source 

literature, all relevant values were standardized to a dry basis using a conventional conversion equation (Equation 1.) 

that incorporates the respective moisture content (MC), thereby ensuring consistency and comparability across the 

dataset [24]. 

𝐹𝐶𝑑𝑟𝑦  =  
𝐹𝐶𝑤𝑒𝑡

1 –  𝑀𝐶
 

𝑉𝑀𝑑𝑟𝑦  =  
𝑉𝑀𝑤𝑒𝑡

1 –  𝑀𝐶
 

𝑎𝑠ℎ𝑑𝑟𝑦  =  
𝑎𝑠ℎ𝑤𝑒𝑡

1 –  𝑀𝐶
 

(1) 

The dataset utilized for the development of the predictive model encompassed 7 input variables characterizing 

the physicochemical composition of feedstocks, in addition to one process parameter associated with the pyrolysis 

operation. These input features included fixed carbon (FC), ash content (Ash), volatile matter (VM), and elemental 

constituents—carbon (C), oxygen (O), hydrogen (H), and nitrogen (N)—alongside pyrolysis temperature (PT). The 

dependent variable, employed as the predictive target, was the biochar yield derived from the thermochemical 

conversion process. 

To investigate the interdependence between any pair of variables—whether among input parameters or between 

output and input variables—the Pearson Correlation Coefficient (PCC), denoted (r), was utilized as a statistical metric 

to quantify the strength and direction of linear associations, as outlined in Equation (2) [25]. A PCC value of +1 or −1 

denotes a perfect linear relationship (positive or negative), respectively, while a r value of 0 indicates the absence of a 

linear relationship. The absolute value of the r also serves as an indicator of the relative influence or predictive 

significance of each input variable on key output responses, including biochar yield, proximate properties (fixed carbon, 

ash, and volatile matter), and elemental composition (carbon, hydrogen, oxygen, and nitrogen). In this analysis, y and 

x represent the two variables under examination, and n denotes the total number of observations employed in the 

calculation. 

𝑟 =
∑  𝑛

𝑖=1 (𝑥𝑖 − 𝑥̅) ∑  𝑛
𝑖=1 (𝑦𝑖 − 𝑦̅)

√∑  𝑛
𝑖=1 (𝑥𝑖 − 𝑥̅)2√∑  𝑛

𝑖=1 (𝑦𝑖 − 𝑦̅)2
 (2) 
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Table 1. Summary of the datasets and references 

References 
Biomass 

Feedstock 
FC (%) 

VM 

(%) 

Ash 

(%) 
C (%) H (%) O (%) N (%) T (°C) 

BiocharYield 

(%) 

Bhattacharjee 

& Biswas, 2019 

Orange 

Bagasse 
22.23 74.94 2.83 43.57 4.4 51.78 0.17 

350–

600 
28.26–56.71 

Biswas et al., 

2017 

Agricultural 

Residues 

6.54–

15.12 

71.94–

91.16 

1.05–

15.14 

36.07–

48.12 

5.20–

6.34 

32.88–

51.78 

0.17–

1.85 

300–

450 
24.30–43.30 

Chen et al., 

2015 
Bamboo 16.05 82.72 1.23 50.21 5.63 42.93 1.23 

300–

700 
23.60–49.30 

Crombie & 

Mašek, 2015 
Straw Pellet 15.32 77.28 7.41 42 5.5 44.9 0.1 

350–

650 
31.20–42.10 

He et al., 2018 
Agricultural 

Residues 

7.49–

17.96 

75.66–

86.09 

4.38–

13.07 

36.71–

43.95 

5.47–

7.77 

33.24–

45.51 

0.49–

2.08 

300–

700 
17.68–74.49 

Hong et al., 

2020 

Agricultural 

Residues 

10.16–

10.17 

76.86–

82.63 

7.39–

12.98 

40.06–

43.95 

5.47–

5.81 

40.23–

41.12 

0.69–

1.12 

300–

600 
34.98–74.32 

Lee et al., 2013 
Agricultural 

Residues 

11.73–

23.18 

70.24–

87.83 

0.44–

8.05 

51.71–

64.23 

4.37–

6.89 

27.61–

45.51 

0.23–

1.40 
500 22.30–38.70 

Li, A., 2016 
Pinewood 

Sawdust 

61.78–

86.37 

10.11–

35.04 

1.63–

4.13 
- - - - 

400–

700 
21.74–31.09 

Liu & Han, 

2015 

Agricultural 

Residues 

11.10–

13.15 

80.85–

85.45 

1.40–

8.05 

47.75–

48.15 

5.61–

6.70 

43.60–

45.51 

0.90–

1.35 

200–

330 
50.21–91.00 

Liu et al., 2014 Corncob 18.01 78.71 3.28 48.12 6.48 43.51 1.89 
300–

600 
21.70–77.30 

Patra et al., 

2021 

Agricultural 

Residues 

4.33–

7.22 

84.56–

87.05 

5.73–

9.96 

40.80–

45.70 

4.10–

5.50 

40.50–

45.70 

0.20–

3.90 

300–

600 
23.10–52.30 

Bian et al, 2016 
Agricultural 

Residues 

45.84–

68.14 

13.14–

31.66 

14.56–

31.79 
- - - - 400 35–40 

Rout et al., 

2016 

Coconut 

Shell 
12.46 83.98 3.56 64.23 6.89 27.61 0.77 

450–

600 
25.66–32.48 

S. Matali, 2016 
Oil Palm 

Frond 

27.88–

44.53 

56.0–

79.18 

2.9–

8.52 
- - - - 

200–

300 
43.2–95 

Shariff et al., 

2016 

Agricultural 

Residues 

9.08–

16.07 

81.51–

87.76 

1.05–

7.28 

41.78–

48.88 

5.82–

5.97 

48.88–

51.07 

0.00–

0.26 

400–

600 
25.98–36.78 

Tag et al., 2016 
Agricultural 

Residues 

23.50–

27.80 

68.20–

70.90 

4.00–

9.61 

35.70–

48.07 

5.27–

6.36 

40.98–

48.07 

1.03–

9.61 

250–

600 
27.60–72.10 

Ucar & Ozkan, 

2008 

Rapeseed Oil 

Cake 
17.67 75.28 7.05 45.92 6.21 40.09 6.9 

400–

500 
33.23–38.40 

2.2. Multi-layer Perceptron Neural Network 

Multilayer Perceptrons (MLPs) are fully linked feedforward neural networks frequently applied in supervised 

regression tasks. They are trained using the Levenberg–Marquardt backpropagation algorithm, which efficiently 

minimizes error. During training, inputs are processed through the network using randomly initialized weights. The 

output is evaluated to target values, and weights are iteratively updated in the inversely related direction of the mean 

squared error gradient to reduce prediction error [26]. 

The architecture of a Multilayer Perceptron Neural Network (MLP-NN) typically comprises three fundamental 

layers: an input layer, one or more hidden layers, and an output layer [27]. Each layer is composed of numerous 

interconnected processing elements known as neurons. In the present study, the implemented MLP-NN structure 

includes eight input layer, one output layer, and one hidden layer. A schematic representation of this neural architecture 

is illustrated in Figure 1. 

In this study, a Multilayer Perceptron Neural Network (MLP-NN) model was constructed to predict biochar yield 

based on biomass properties and the temperature on pyrolysis process. The dataset was partitioned into 70% for 

training, 15% for validation, and 15% for testing, confirming effective model learning while minimizing overfitting. The 

network architecture consisted of a single hidden layer comprising 10 neurons. The entire model development and 

training procedures were conducted using the MATLAB Neural Network Fitting, which provides an interactive 

environment for designing and analyzing neural network models. 
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Figure 1. A Schematic illustration of the neural network architecture 

3. Results and Discussions 

3.1. Exploration of Dataset 

Figure 2. Pearson correlation coefficients (r) of inputs and output from several variables 

The linear relationships among the input variables (fixed carbon [FC], ash content, volatile matter [VM], 

elemental composition [C, H, O, N], and temperature [T (°C)]) and the output variable (biochar yield) were quantified 

using Pearson correlation coefficients (r) and depicted in the form of a heatmap, as shown in Figure 2. The r values 

range from −1 to +1, where data points close to ±1 demonstrate strong linear correlations, and values near 0 indicate 

weak or no linear correlation. Strong negative correlations were observed between FC and VM (r = −0.966), C and ash 
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(r = −0.543), and O and H (r = −0.415), indicating potential trade-offs between these biomass properties. In terms of the 

relationship between input and output, the temperature variable exhibited the strongest (and negative) correlation with 

biochar yield (PCC = −0.643), suggesting that higher pyrolysis temperatures are correlated with lower yield, a trend 

consistent with previous findings on biochar production. Other variables showed relatively weak correlations with 

biochar yield (|r| < 0.2), including ash (r = 0.157), FC (r = 0.091), and VM (r = −0.104), implying that while biomass 

composition influences yield, temperature is the dominant factor under the conditions studied [28]. 

Figure 3. The degree of importance of input variables in predicting biochar yield using PCC 

Similarly, Figure 3 shows the significance of input variables in predicting biochar yield using the Pearson  

correlation Coefficient. Temperature (T [°C]) is the most influential factor, indicating its dominant role in determining 

yield, the result is further compared to relevant works from Yize Li [24]. Other variables such as ash, nitrogen, and 

volatile matter (VM) also contribute, but to a lesser extent. In  ontrast, carbon (C), hydrogen (H), and oxygen (O) show 

minimal impact, suggesting that biomass composition is less significant than process temperature in this prediction 

model. 

 

3.2. Predictive Performance of Multi-layer Perceptron Neural Network 

Figure 4. The training performance of the artificial neural network (ANN) model for predicting biochar yield 

Figure 4 illustrates the training execution of the artificial neural network (ANN) model for estimating biochar 

yield, based on the mean squared error (MSE) over 37 epochs. The validation (green), training (blue), and test (red) error 

curves demonstrate the learning progression of the model. The best validation performance was achieved at epoch 31 
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with an MSE of 25.66, as showed by the green circle. After this point, the validation and test errors began to increase 

slightly, indicating the onset of overfitting [29]. This behavior highlights that the model achieved optimal generalization 

performance at epoch 31, which was selected as the final trained model. 

Figure 5. The error histogram of the artificial neural network (ANN) model 

Figure 5 illustrates the error histogram of the ANN model, constructed with 20 bins to evaluate the distribution 

of prediction errors across the validation, training, and test datasets. The histogram reveals that the majority of errors 

are concentrated around zero, indicating that the model exhibits a low bias and is capable of generating accurate 

predictions for most instances. The distribution is relatively symmetric, with a high density of instances within a narrow 

error range (approximately −3 to 4), suggesting that the model generalizes well and maintains consistent performance 

across all data subsets. The presence of a few outliers with larger errors is minimal and does not significantly affect the 

overall predictive capability. The orange line depicts the zero-error reference, emphasizing that most predictions closely 

align with actual values. 
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Figure 6. The regression visualizations for the artificial neural network (ANN) model 

Figure 6 presents the regression plots for the ANN model, illustrating the correlation between predicted and 

existing values across the training, test datasets, and validation, as well as the overall performance. The R2 values 

indicate a strong linear relationship in all datasets: 0.98812 for training, 0.965 for validation, 0.941 for testing, and an 

overall R2 of 0.971. These results propose that the model is capable of accurately predicting the target variable with 

minimal deviation across different data subsets. Comparing the test result, it is noteworthy that previous studies in the 

biochar yield prediction literature have reported relatively consistent coefficient of determination (R²) values, such as 

Zhu (R² = 0.855) [25], Cao (R² = 0.804) [30], Pathy (R² = 0.844) [31], and Khan (R² = 0.930) [32]. The close alignment of the 

regression lines to the ideal reference line Y = T (where predicted output equals the target) further confirms the model's 

dependability and generalization ability. Minor deviations in the test data indicate slight overfitting, yet the overall 

high correlation validates the ANN model as a reliable predictive tool for estimating biochar yield based on biomass 

characteristics and pyrolysis conditions.  

4. Conclusion 

This study demonstrated the successful application of ANN model to predict biochar yield based on the 

physicochemical properties of biomass and temperature of pyrolysis process. The network achieved high accuracy, with 

R2-values of 0.98812 (training), 0.96529 (validation), and 0.94148 (testing), indicating strong predictive capability and 

good generalization. Error distribution analysis showed that most prediction errors were close to zero, reinforcing the 

model's robustness with no overfitting. These results point out the potential of ANN as an effective tool for modeling 

complex nonlinear relationships in biomass pyrolysis processes. The developed model can assist in optimizing biochar 

production by providing rapid and accurate yield estimations without requiring extensive experimental work. For 

future work, the model can be extended using more complex and diverse datasets that include a wider range of biomass 

types and pyrolysis conditions. Additionally, incorporating more input variables such as heating rate, particle size, 

residence time, and reactor type may further improve prediction accuracy and model generalizability. 
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