Enhancing DSSC Performance through Metal-Doped TiO₂ and Poly-Tannin Dye: A Study on Bandgap Reduction and Photon Absorption

Authors

  • Hardeli Hardeli
  • Anisa Ade Putri Universitas Negeri Padang
  • Resi Gusmar Lina Universitas Negeri Padang
  • Widi Feronika Universitas Negeri Padang
  • Putri Permatasari Gifu University

Keywords:

DSSC, Photovoltaic Efficiency, Poly-Tannin, Semiconductor Bandgap, TiO₂ Modification

Abstract

Dye-sensitized solar cells (DSSC) are a promising alternative to conventional solar cells by using dye molecules to absorb sunlight and facilitate energy conversion. In this study, tannins were used as the dye. Tannins can be polymerized into poly-tannins, which increases the amount of double bonds and therefore improves photon absorption. Furthermore, this study will also examine how metal doping affects the TiO₂ semiconductor to further enhance its performance. The selected dopants—Cu, Fe, and Ag—were tested for their capacity to change the bandgap and increase electron mobility. Experiments showed that metal doping lowered the bandgap of TiO₂, resulting in better electron excitation and charge transfer. Under optimum conditions, the combination of poly-tannin dye and TiO₂-Ag semiconductor resulted in the highest DSSC efficiency (9.18%). Based on this, it can be concluded that combining metal-doped TiO₂ with poly-tannin dyes can greatly improve DSSC performance.

Downloads

Download data is not yet available.

References

D. Welsby, J. Price, S. Pye, and P. Ekins, “Unextractable fossil fuels in a 1.5 °C world,” Nature, vol. 597, no. 7875, pp. 230–234, Sep. 2021, doi: 10.1038/s41586-021-03821-8.

B. P. Resosudarmo, J. F. Rezki, and Y. Effendi, “Prospects of Energy Transition in Indonesia,” Bull Indones Econ Stud, vol. 59, no. 2, pp. 149–177, May 2023, doi: 10.1080/00074918.2023.2238336.

A. Raihan, M. I. Pavel, D. A. Muhtasim, S. Farhana, O. Faruk, and A. Paul, “The role of renewable energy use, technological innovation, and forest cover toward green development: Evidence from Indonesia,” Innovation and Green Development, vol. 2, no. 1, p. 100035, Mar. 2023, doi: 10.1016/j.igd.2023.100035.

A. Gulagi et al., “Accelerating the transition from coal to renewables in Indonesia to achieve a net‐zero energy system,” IET Renewable Power Generation, vol. 19, no. 1, Jan. 2025, doi: 10.1049/rpg2.13188.

B. S. Ramadan et al., “Successful energy transition—Case study in Indonesia,” in Decarbonization Strategies and Drivers to Achieve Carbon Neutrality for Sustainability, Elsevier, 2024, pp. 391–408. doi: 10.1016/B978-0-443-13607-8.00014-6.

N. Mohammad, W. W. Mohamad Ishak, S. I. Mustapa, and B. V. Ayodele, “Natural Gas as a Key Alternative Energy Source in Sustainable Renewable Energy Transition: A Mini Review,” Front Energy Res, vol. 9, May 2021, doi: 10.3389/fenrg.2021.625023.

G. A. Mansoori et al., “Fuels of the Future for Renewable Energy Sources (Ammonia, Biofuels, Hydrogen),” Jan. 2021.

A. G. Kök, K. Shang, and Ş. Yücel, “Investments in Renewable and Conventional Energy: The Role of Operational Flexibility,” Manufacturing & Service Operations Management, vol. 22, no. 5, pp. 925–941, Sep. 2020, doi: 10.1287/msom.2019.0789.

A. G. Kök, K. Shang, and Ş. Yücel, “Investments in Renewable and Conventional Energy: The Role of Operational Flexibility,” Manufacturing & Service Operations Management, vol. 22, no. 5, pp. 925–941, Sep. 2020, doi: 10.1287/msom.2019.0789.

M. Höök, J. Li, K. Johansson, and S. Snowden, “Growth Rates of Global Energy Systems and Future Outlooks,” Natural Resources Research, vol. 21, no. 1, pp. 23–41, Mar. 2012, doi: 10.1007/s11053-011-9162-0.

B. Podobnik, “Toward a Sustainable Energy Regime,” Technol Forecast Soc Change, vol. 62, no. 3, pp. 155–172, Nov. 1999, doi: 10.1016/S0040-1625(99)00042-6.

F. J. M. M. Nijsse et al., “The momentum of the solar energy transition,” Nat Commun, vol. 14, no. 1, p. 6542, Oct. 2023, doi: 10.1038/s41467-023-41971-7.

J. Khan and M. H. Arsalan, “Solar power technologies for sustainable electricity generation – A review,” Renewable and Sustainable Energy Reviews, vol. 55, pp. 414–425, Mar. 2016, doi: 10.1016/j.rser.2015.10.135.

H. H. Pourasl, R. V. Barenji, and V. M. Khojastehnezhad, “Solar energy status in the world: A comprehensive review,” Energy Reports, vol. 10, pp. 3474–3493, Nov. 2023, doi: 10.1016/j.egyr.2023.10.022.

M. Shamoushaki and S. C. L. Koh, “Solar cells combined with geothermal or wind power systems reduces climate and environmental impact,” Commun Earth Environ, vol. 5, no. 1, p. 572, Oct. 2024, doi: 10.1038/s43247-024-01739-3.

N. Kannan and D. Vakeesan, “Solar energy for future world: - A review,” Renewable and Sustainable Energy Reviews, vol. 62, pp. 1092–1105, Sep. 2016, doi: 10.1016/j.rser.2016.05.022.

M. Hosenuzzaman, N. A. Rahim, J. Selvaraj, M. Hasanuzzaman, A. B. M. A. Malek, and A. Nahar, “Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 284–297, Jan. 2015, doi: 10.1016/J.RSER.2014.08.046.

V. R. Pannase and H. B. Nanavala, “A review of PV technology power generation, PV material, performance and its applications,” in 2017 International Conference on Inventive Systems and Control (ICISC), IEEE, Jan. 2017, pp. 1–5. doi: 10.1109/ICISC.2017.8068655.

Z. Song, M. Wang, and H. Yang, “Quantification of the Impact of Fine Particulate Matter on Solar Energy Resources and Energy Performance of Different Photovoltaic Technologies,” ACS Environmental Au, vol. 2, no. 3, pp. 275–286, May 2022, doi: 10.1021/acsenvironau.1c00048.

A. E. Cagle, M. Shepherd, S. M. Grodsky, A. Armstrong, S. M. Jordaan, and R. R. Hernandez, “Standardized metrics to quantify solar energy-land relationships: A global systematic review,” Frontiers in Sustainability, vol. 3, Feb. 2023, doi: 10.3389/frsus.2022.1035705.

E. Kabir, P. Kumar, S. Kumar, A. A. Adelodun, and K. H. Kim, “Solar energy: Potential and future prospects,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 894–900, Feb. 2018, doi: 10.1016/J.RSER.2017.09.094.

M. K. H. Rabaia et al., “Environmental impacts of solar energy systems: A review,” Science of The Total Environment, vol. 754, p. 141989, Feb. 2021, doi: 10.1016/J.SCITOTENV.2020.141989.

S. Ghosh and R. Yadav, “Future of photovoltaic technologies: A comprehensive review,” Sustainable Energy Technologies and Assessments, vol. 47, p. 101410, Oct. 2021, doi: 10.1016/J.SETA.2021.101410.

H. Lin et al., “Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers,” Nat Energy, vol. 8, no. 8, pp. 789–799, May 2023, doi: 10.1038/s41560-023-01255-2.

A. S. Subbiah et al., “Efficient blade-coated perovskite/silicon tandems via interface engineering,” Joule, vol. 9, no. 1, p. 101767, Jan. 2025, doi: 10.1016/j.joule.2024.09.014.

A. Machín and F. Márquez, “Advancements in Photovoltaic Cell Materials: Silicon, Organic, and Perovskite Solar Cells,” Materials, vol. 17, no. 5, p. 1165, Mar. 2024, doi: 10.3390/ma17051165.

W. Liu et al., “Flexible solar cells based on foldable silicon wafers with blunted edges,” Nature, vol. 617, no. 7962, pp. 717–723, May 2023, doi: 10.1038/s41586-023-05921-z.

Z. Benzarti and A. Khalfallah, “Recent Advances in the Development of Thin Films,” Coatings, vol. 14, no. 7, p. 878, Jul. 2024, doi: 10.3390/coatings14070878.

H. A. Fetouh, A. E. Dissouky, H. A. Salem, M. Fathy, B. Anis, and A. E. Hady Kashyout, “Synthesis, characterization and evaluation of new alternative ruthenium complex for dye sensitized solar cells,” Sci Rep, vol. 14, no. 1, p. 16718, Jul. 2024, doi: 10.1038/s41598-024-66808-1.

A. B. Muñoz-García et al., “Dye-sensitized solar cells strike back,” Chem Soc Rev, vol. 50, no. 22, pp. 12450–12550, 2021, doi: 10.1039/D0CS01336F.

E. H. Onah, N. L. Lethole, and P. Mukumba, “Luminescent Materials for Dye-Sensitized Solar Cells: Advances and Directions,” Applied Sciences, vol. 14, no. 20, p. 9202, Oct. 2024, doi: 10.3390/app14209202.

S. S. Malhotra, M. Ahmed, M. K. Gupta, and A. Ansari, “Metal-free and natural dye-sensitized solar cells: recent advancements and future perspectives,” Sustain Energy Fuels, vol. 8, no. 18, pp. 4127–4163, 2024, doi: 10.1039/D4SE00406J.

J. Barichello et al., “Bifacial dye-sensitized solar cells for indoor and outdoor renewable energy-based application,” J Mater Chem C Mater, vol. 12, no. 7, pp. 2317–2349, 2024, doi: 10.1039/D3TC03220E.

V. P. Singh and R. Rawat, “The Scope Of Dye-sensitised Solar Cells For Future Applications,” International Journal For Multidisciplinary Research, vol. 5, no. 5, Oct. 2023, doi: 10.36948/ijfmr.2023.v05i05.7845.

S. A. Badawy, E. Abdel-Latif, and M. R. Elmorsy, “Tandem dye-sensitized solar cells achieve 12.89% efficiency using novel organic sensitizers,” Sci Rep, vol. 14, no. 1, p. 26072, Oct. 2024, doi: 10.1038/s41598-024-75959-0.

C. Hora, F. Santos, M. G. F. Sales, D. Ivanou, and A. Mendes, “Dye-Sensitized Solar Cells for Efficient Solar and Artificial Light Conversion,” ACS Sustain Chem Eng, vol. 7, no. 15, pp. 13464–13470, Aug. 2019, doi: 10.1021/acssuschemeng.9b02990.

M. Sibiński et al., “Impact of blocking layers based on TiO2 and ZnO prepared via direct current reactive magnetron sputtering on DSSC solar cells,” Sci Rep, vol. 14, no. 1, p. 10676, May 2024, doi: 10.1038/s41598-024-61512-6.

S. Rahman et al., “Research on dye sensitized solar cells: recent advancement toward the various constituents of dye sensitized solar cells for efficiency enhancement and future prospects,” RSC Adv, vol. 13, no. 28, pp. 19508–19529, 2023, doi: 10.1039/D3RA00903C.

S. Ding, C. Yang, J. Yuan, H. Li, X. Yuan, and M. Li, “An overview of the preparation and application of counter electrodes for DSSCs,” RSC Adv, vol. 13, no. 18, pp. 12309–12319, 2023, doi: 10.1039/D3RA00926B.

R. Kumar, V. Sahajwalla, and P. Bhargava, “Fabrication of a counter electrode for dye-sensitized solar cells (DSSCs) using a carbon material produced with the organic ligand 2-methyl-8-hydroxyquinolinol (Mq),” Nanoscale Adv, vol. 1, no. 8, pp. 3192–3199, 2019, doi: 10.1039/C9NA00206E.

K. Prajapat et al., “Next-generation counter electrodes for dye-sensitized solar cells: A comprehensive overview,” Sustainable Materials and Technologies, vol. 42, p. e01178, Dec. 2024, doi: 10.1016/J.SUSMAT.2024.E01178.

K. V. Srivastava, P. Srivastava, A. Srivastava, R. K. Maurya, Y. P. Singh, and A. Srivastava, “1D TiO2 photoanodes: a game-changer for high-efficiency dye-sensitized solar cells,” RSC Adv, vol. 15, no. 7, pp. 4789–4819, 2025, doi: 10.1039/D4RA06254J.

H. Pu, C. Tian, and H. Zhang, “In situ hydrothermal synthesis of visible light active sulfur doped TiO2 from industrial TiOSO4 solution,” Sci Rep, vol. 14, no. 1, p. 31258, Dec. 2024, doi: 10.1038/s41598-024-82640-z.

N. M. Chauke, R. L. Mohlala, S. Ngqoloda, and M. C. Raphulu, “Harnessing visible light: enhancing TiO2 photocatalysis with photosensitizers for sustainable and efficient environmental solutions,” Frontiers in Chemical Engineering, vol. 6, Feb. 2024, doi: 10.3389/fceng.2024.1356021.

D. Jiang et al., “A Review on Metal Ions Modified TiO2 for Photocatalytic Degradation of Organic Pollutants,” Catalysts, vol. 11, no. 9, p. 1039, Aug. 2021, doi: 10.3390/catal11091039.

S. Borbón, S. Lugo, D. Pourjafari, N. Pineda Aguilar, G. Oskam, and I. López, “Open-Circuit Voltage (VOC) Enhancement in TiO2-Based DSSCs: Incorporation of ZnO Nanoflowers and Au Nanoparticles,” ACS Omega, vol. 5, no. 19, pp. 10977–10986, May 2020, doi: 10.1021/acsomega.0c00794.

M. A. Ibrahem, E. Verrelli, A. M. Adawi, J.-S. G. Bouillard, and M. O’Neill, “Plasmons Enhancing Sub-Bandgap Photoconductivity in TiO2 Nanoparticles Film,” ACS Omega, vol. 9, no. 9, pp. 10169–10176, Mar. 2024, doi: 10.1021/acsomega.3c06932.

E. M. Kutorglo et al., “Efficient full solar spectrum-driven photocatalytic hydrogen production on low bandgap TiO2/conjugated polymer nanostructures,” RSC Adv, vol. 13, no. 34, pp. 24038–24052, 2023, doi: 10.1039/D3RA04049F.

C. Liao, Y. Li, and S. C. Tjong, “Visible-Light Active Titanium Dioxide Nanomaterials with Bactericidal Properties,” Nanomaterials, vol. 10, no. 1, p. 124, Jan. 2020, doi: 10.3390/nano10010124.

M. Zhang et al., “Ti3+ Self-Doping of TiO2 Boosts Its Photocatalytic Performance: A Synergistic Mechanism,” Molecules, vol. 29, no. 22, p. 5385, Nov. 2024, doi: 10.3390/molecules29225385.

Y. Taneja, D. Dube, and R. Singh, “Recent advances in elemental doping and simulation techniques: improving structural, photophysical and electronic properties of titanium dioxide,” J Mater Chem C Mater, vol. 12, no. 37, pp. 14774–14808, 2024, doi: 10.1039/D4TC02031F.

J. F. Fatriansyah et al., “The Effect of Zn Doping to TiO2 Thin Film Band Gap and Photocatalytic Performance: Experiment and Density Functional Theory Simulation,” in 2023 6th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), IEEE, Dec. 2023, pp. 324–330. doi: 10.1109/ISRITI60336.2023.10467760.

N. A. Erfan, M. S. Mahmoud, H. Y. Kim, and N. A. M. Barakat, “Synergistic doping with Ag, CdO, and ZnO to overcome electron-hole recombination in TiO2 photocatalysis for effective water photo splitting reaction,” Front Chem, vol. 11, Nov. 2023, doi: 10.3389/fchem.2023.1301172.

S. Mohammadi, S. Akbari Nia, and D. Abbaszadeh, “Reduction of recombination at the interface of perovskite and electron transport layer with graded pt quantum dot doping in ambient air-processed perovskite solar cell,” Sci Rep, vol. 14, no. 1, p. 24254, Oct. 2024, doi: 10.1038/s41598-024-75495-x.

N. A. Erfan, M. S. Mahmoud, H. Y. Kim, and N. A. M. Barakat, “Synergistic doping with Ag, CdO, and ZnO to overcome electron-hole recombination in TiO2 photocatalysis for effective water photo splitting reaction,” Front Chem, vol. 11, Nov. 2023, doi: 10.3389/fchem.2023.1301172.

M. M. Mazumder, M. Akteruzzaman, H. Yeasmin, and R. Islam, “Doping in TiO2 to improve solar cell efficiency: A Comprehensive Review,” Jun. 05, 2023. doi: 10.26434/chemrxiv-2023-ffmq9.

I. Abdelfattah and A. M. El-Shamy, “A comparative study for optimizing photocatalytic activity of TiO2-based composites with ZrO2, ZnO, Ta2O5, SnO, Fe2O3, and CuO additives,” Sci Rep, vol. 14, no. 1, p. 27175, Nov. 2024, doi: 10.1038/s41598-024-77752-5.

A. M. Alotaibi et al., “Enhanced Photocatalytic and Antibacterial Ability of Cu-Doped Anatase TiO 2 Thin Films: Theory and Experiment,” ACS Appl Mater Interfaces, vol. 12, no. 13, pp. 15348–15361, Apr. 2020, doi: 10.1021/acsami.9b22056.

T. Tian, J. Zhang, L. Tian, S. Ge, and Z. Zhai, “Photocatalytic Degradation of Gaseous Benzene Using Cu/Fe-Doped TiO2 Nanocatalysts under Visible Light,” Molecules, vol. 29, no. 1, p. 144, Dec. 2023, doi: 10.3390/molecules29010144.

K. H. Lee et al., “The Comparison of Metal Doped TiO2 Photocatalytic Active Fabrics under Sunlight for Waste Water Treatment Applications,” Catalysts, vol. 13, no. 9, p. 1293, Sep. 2023, doi: 10.3390/catal13091293.

A. Khlyustova, N. Sirotkin, T. Kusova, A. Kraev, V. Titov, and A. Agafonov, “Doped TiO2 : the effect of doping elements on photocatalytic activity,” Mater Adv, vol. 1, no. 5, pp. 1193–1201, 2020, doi: 10.1039/D0MA00171F.

A. Mancuso et al., “Visible Light-Driven Photocatalytic Activity and Kinetics of Fe-Doped TiO2 Prepared by a Three-Block Copolymer Templating Approach,” Materials, vol. 14, no. 11, p. 3105, Jun. 2021, doi: 10.3390/ma14113105.

X. Feng, Z. Liu, L. Qin, S.-Z. Kang, and X. Li, “Photocatalytic activity and the electron transport mechanism of titanium dioxide microsphere/porphyrin implanted with small size copper,” Physical Chemistry Chemical Physics, vol. 22, no. 24, pp. 13528–13535, 2020, doi: 10.1039/D0CP01953D.

N. Wetchakun, P. Pirakitikulr, K. Chiang, and S. Phanichphant, “Visible light-active nano-sized Fe-doped TiO2 photocatalysts and their characterization,” in 2008 2nd IEEE International Nanoelectronics Conference, IEEE, 2008, pp. 836–841. doi: 10.1109/INEC.2008.4585613.

S. K. Gharaei, M. Abbasnejad, and R. Maezono, “Bandgap reduction of photocatalytic TiO2 nanotube by Cu doping,” Sci Rep, vol. 8, no. 1, p. 14192, Sep. 2018, doi: 10.1038/s41598-018-32130-w.

A. M. Alotaibi et al., “Enhanced Photocatalytic and Antibacterial Ability of Cu-Doped Anatase TiO2 Thin Films: Theory and Experiment,” ACS Appl Mater Interfaces, vol. 12, no. 13, pp. 15348–15361, Apr. 2020, doi: 10.1021/acsami.9b22056.

Y. Cherif et al., “Facile Synthesis of Gram-Scale Mesoporous Ag/TiO2 Photocatalysts for Pharmaceutical Water Pollutant Removal and Green Hydrogen Generation,” ACS Omega, vol. 8, no. 1, pp. 1249–1261, Jan. 2023, doi: 10.1021/acsomega.2c06657.

S. Wanwong, W. Sangkhun, P. Jiamboonsri, and T. Butburee, “Electrospun silk nanofiber loaded with Ag-doped TiO 2 with high-reactive facet as multifunctional air filter,” RSC Adv, vol. 13, no. 37, pp. 25729–25737, 2023, doi: 10.1039/D3RA04621D.

S. Kr. Singh, U. Kr. Samanta, A. Dhar, and M. Chandra Paul, “Structural, Morphological, and Optical Properties of Ag‐Doped TiO 2 Thin‐Film over Fiber Optic Substrate for Sensing Applications,” physica status solidi (a), vol. 218, no. 22, Nov. 2021, doi: 10.1002/pssa.202100447.

S. Arain et al., “Microemulsion-Based Synthesis of Highly Efficient Ag-Doped Fibrous SiO2-TiO2 Photoanodes for Photoelectrochemical Water Splitting,” Catalysts, vol. 15, no. 1, p. 66, Jan. 2025, doi: 10.3390/catal15010066.

O. AVCİATA, Y. BENLİ, S. GORDUK, and O. KOYUN, “Ag doped TiO2 nanoparticles prepared by hydrothermal method and coating of the nanoparticles on the ceramic pellets for photocatalytic study: Surface properties and photoactivity,” Journal of Engineering Technology and Applied Sciences, vol. 1, no. 1, pp. 34–50, May 2016, doi: 10.30931/jetas.281381.

A. Zdyb and E. Krawczak, “Organic Dyes in Dye-Sensitized Solar Cells Featuring Back Reflector,” Energies (Basel), vol. 14, no. 17, p. 5529, Sep. 2021, doi: 10.3390/en14175529.

G. G. Asfaw, N. E. Benti, M. A. Desta, and Y. S. Mekonnen, “Design and fabrication of TiO2-based dye sensitized solar cells using plant-derived organic dyes,” AIP Adv, vol. 13, no. 7, Jul. 2023, doi: 10.1063/5.0153639.

R. H. Kisdina et al., “Characterization of Natural and Synthetic Dyes for Large-Scale Dye-Sensitized Solar Cells,” Defect and Diffusion Forum, vol. 438, pp. 69–78, Feb. 2025, doi: 10.4028/p-BsQ0OO.

Basuki, Suyitno, and B. Kristiawan, “Absorbance and electrochemical properties of natural indigo dye,” 2018, p. 030067. doi: 10.1063/1.5024126.

A. Dessì et al., “D–A–π–A organic dyes with tailored green light absorption for potential application in greenhouse-integrated dye-sensitized solar cells,” Sustain Energy Fuels, vol. 5, no. 4, pp. 1171–1183, 2021, doi: 10.1039/D0SE01610A.

Downloads

Published

2025-04-27

How to Cite

Hardeli, H., Ade Putri, A., Gusmar Lina, R., Feronika, W., & Permatasari, P. (2025). Enhancing DSSC Performance through Metal-Doped TiO₂ and Poly-Tannin Dye: A Study on Bandgap Reduction and Photon Absorption. Jurnal Teknik Terapan, 4(1), 19–29. Retrieved from https://j-teta.polije.ac.id/index.php/publikasi/article/view/56

Issue

Section

Articles